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Abstract. The effect of pepndicular surface anisotropy on surface spin-wave excitations in 
a semi-infinite ferromagnet is studied by solving the coupled equations of motion of spin-wave 
annihilation and creation operators. The ground-state spin arrangement in our model is either 
as in-plane ordering or a canted one due to a competition between the perpendicular anisotropy 
in the surface and the bulk anisotropy parallel to the surface. and surface spin-wave frequencies 
are calculated in both phases. It is shown that at $e m i t i o n  point betwem these two distinct 
phases a low-lying surface spin-wave branch becomes soff, and consequently the ellipticity and 
the amp!imde of spin precessions in the surface layer grow large in the vicinity of tk transition 
point. 

1. Introduction 

In recent experiments large perpendicular anisotropy has been found at the surfaces of 
magnetic thin films and semi-infinite magnets, and spin reorientation phenomena caused 
by a change in the film thickness or temperature have been extensively studied [ 1 4 .  
The preferred direction of magnetization in such materials is, in general, parallel to the 
surface because of a shape anisotropy. Surfaces, however, can possess a perpendicular 
anisotropy in consequence of the reduced symmetry, so that there occurs a competition 
between the perpendicular surface anisotropy and in-plane bulk one [5, 61. Theoretical 
investigations taking into account such a competition have been performed recently for 
magnetic films [7, 81 and semi-infinite magnets [9-111. The general trend is that in zero 
extemal field the direction of magnetization in thin films is either parallel or perpendicular 
to the surface, depending sensitively on the film thickness and temperature; for example, at 
low temperatures a film consisting of a few layers may have all spins normal to the surface, 
but for thicker films or at higher temperatures they lie parallel to the surface. On the other 
hand, in semi-infinite magnets spin canting may occur near the surface if the strength of 
the perpendicular surface anisotropy exceeds a certain critical value. 

In the surface region of a semi-infinite magnet there exist surface spin waves reflecting 
the spin arrangement at and near the surface [12, 131. Surface spin waves in an exchange- 
coupled semi-infinite ferromagnet have been studied by De Wames and Walfram [14], and 
recently their study has been extended by Gopalan and Cottam [15] to the system with 
singleion uniaxial and non-uniaxial anisotropy, and Shen and Li [16] to a ferrimagnet. The 
studies of these authors have been concerned with the case where the surface and the bulk 
have the same easy direction of magnetization. If the surface anisotropy is non-collinear with 
the bulk one, as encountered in the system with dominant perpendicular surface anisotropy, 
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spin canting will appear near the surface. The surface spin waves may then be described 
by the precession of spins around the equilibrium direction specified by a layer-dependent 
canting angle. 

The purpose of this paper is to investigate the effect of perpendicular surface anisotropy 
on surface spin-wave excitations in a semi-infinite Heisenberg ferromagnet. In an exchange- 
coupled system a simple expression for the anisotropy on the surface may be either a single 
ion uniaxial anisotropy of  the form -n(s2)' or Ising-&e one. III this paper we assume the 
latter in the perpendicular direction to the surface. In the bulk, though long-ranged dipolar 
interactions play an important role in determining the easy direction of the bulk spins, we 
assume for simplicity an king-like exchange anisotropy also in the planes parallel to the 
surface. In section 2 we propose a model Hamiltonian, and write the equations of motion 
for spin-wave operators. In section 3 the method used for obtaining surface spin-wave 
frequencies is given. In section 4 we present the results for numerical calculations together 
with features of the precession of spins in the surface layer. 

2. Model Hamiltonian and equation of motion 

We consider a spin4 semi-infinite ferromagnet with a simple-cubic s t~cture .  The x y  plane 
is taken to lie in the surface layer and the z axis is taken normal to the surface. The bulk 
spins are assumed to lie in the xy plane, while the surface spins orient preferentially to the 
z direction. To describe such a system, we set up a model Hamiltonian 

where J represents the ferromagnetic exchange interaction between nearest-neighbour spins, 
and 1 denotes the layer index; 1 = 1 the surface layer, 1 = 2,3, . . . the inner layers, and 
j denotes lattice points in the x y  plane. We put q l l  (E qs) 1 and [I! (= [x,) > 1 for 
1 = 2,3, . . ., and otherwise q11, = 61, = 1, i.e. the spins in the surface layer have the 
king-like anisotropy in the z direction, whereas those in the inner layers have the king-like 
one in the x direction. 

At low temperatures the spins described by the Hamiltonian (1) may be in general in a 
canted state, where the spins in the surface region cant with a layer-dependent canting angle. 
To characterize the spin canting, we choose a layer-dependent coordinate system xi.  yi, zi 
by rotating by angle about y axis as shown in figure 1, and rewrite the Hamiltonian (1) 
by the new coordinate system. Then introducing annihilation and creation operators alj and 
oh by use of the Holstein-Primakoff transform, and making use of the linear spin-wave 
approximation, we have a constant term, and first- and second-order terms in the boson 
representation of the Hamiltonian. The direction of each z; axis is chosen by vanishing the 
first order terms, which leads to 

El 01 =tan-' - 
4 

with 

EI = ~ V I I P I +  PI-I + PI+I (3) 

@I = sin01 q = cos6j. (4) 

KI = ~ C I I Y  + 4-1 + %i 

where 

Here and hereafter the variables with layer index 0 should vanish due to the boundary 
condition at the surface. 
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. 
Figure 1. Schematic new of the coordinate system and 
the spin canting angle 0,. 

% 
Figure 2. Spin canting angle 01 BS a function of the 
smface anisotropy qs. The number attached to each 
curve represen- the layw index. 

The second-order terms of the Hamiltonian may be written, in units with J S  = 1, as 

HZ = I A I ~ ~ ~ ~ U ~ ~ I  - Bi.r+p(ak,,l+pat,i t + akpk, . l+p)  t 

where uqf and u:,~ are respectively the two-dimensional Fourier transform of ulj and ufj, t 

kl.f,P 

(5) +C&k,p-kll t t  + axp-ql) - D~.l+p(a&d~d,~+p + ~ ~ f l ~ ~ - k , , l + p ) l  

ka = (kx, ky) ,  p = -+1 and 

1 
AI = $EIM + WI) - (iw.? + CIW? + I)YY, 

&.f+P = - ( t l q + p  + PfPl+p + 1) 
1 
4 

1 
Cf = - p l f % *  + C l d  - on, 

(6) 
1 
4 &l+P = - m + p  + LLIPltP - 1) 

with yk, = ;(cos&, +cosky). 
The equation of motion for uknf couples with that for ujll, and after introducing the 

frequency Fourier transform, we have these equations of motion (in units of A) in a matrix 
form 
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o l - A  -C [ C U , + A ] [ ; ] = ~  
where I denotes a unit matrix, 

(7) 

with at = 2Ar, br = 2B,,r+l = 2Br+1.r, CI = 4C1, d, = 2Dr,r+1 = 201+1,1, and 

a x , 1 ( 0 )  (0) 

a= [ a w y ]  a+= [ 

Ho= [ -1 :I ;.' ;: ,,. ] 

(9) 

3. Surface spin waves 

Spin-wave spectra including the surface spin waves can be obtained by vanishing the 
determinant of the coefficient matrix in equation (7), which is equivalent to solving 

det(H+H- - 0'1) = 0 or det(H-H+ - 0'1) = 0 (10) 
where H* = A f. C. In the bulk rr = 1, = 0, q, = 1, t r  = <I,, then 
ai = 2[2(<b - yk , )  + I] =ab ,  br = 1, cr = di = 0 in equation (8). Defining 

ab -1 

(11) 

and 
V = H+H- - H i  G* = (Ho&ol)-' G = G'G- = G-G+ (12) 

we can change equation (10) into a more convenient form 

det(l + GV) = 0 

to calculate surface spin-wave spectra. The elements of G* are known as [14, 171 

.*)m+n - (,*)lm-nl 
G2" = ( 

x* - (x*)-l 

x+x- 
(1 -x+x-)(x+ - x - )  

and so 

(G:" - G 2  G m n  = 

with 
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The elements of V are calculated from the first equation of (12): for the diagonal elements 

and for the off-diagonal elements 

h + i  = -a: - b:a& + 2ab 
K+I.I = -aL, - bTa; + k b  
K.I+z = b: - 1 
6,z.r bi+l - 1 ( I  2 1) + 

4. Numerical results and discussion 

In this section we illustrate the results for the spin canting angle and surface spin-wave 
dispersion in the case <b = 1.2. In figure 2 the spin canting angle 81 in each layer measured 
with respect to the plane parallel to the surface is shown as a function of qs. In obtaining 81, 
we have solved self-consistently the equations (2), (3) and (4) by using a simple iteration 
procedure for a symmetric film with thickness 100, which is enough to reproduce the bulk 
state. As follows from figure 2, for qs less than 1.145 all the spins align in plane, while 
when qs exceeds the critical value the spins in the surface cant abruptly out of the surface 
plane. The fact that the spin canting occurs abruptly at the transition point with the infinite 
slope such as shown in the 81 curve versus qs has been pointed out by O’Handley and 
Woods [IO] using a classical continuum model. The critical value qz = 1.145 can be 
obtained analytically from the condition that the in-plane ordering state having 9 = 1 and 
pi = 0 becomes soft at qs = q:, i.e. if we set o = 0 when kll = 0 in equation (lo), then 
det H+ = 0 leads to 

The penetration depth of the canted region depends mainly on the magnitude of <b. As 
cb --f 1, the canted region extends deeper into the interior. On the other hand, if <b is large 
enough, only the spins in the surface layer cant significantly, whereas those of inner layers 
lie in plane. 

Once the gronnd-state spin configuration is determined, surface spin-wave spectra can 
be calculated from equation (13). Since q = 1 and p~ = 0 in the in-plane ordering state, 
equation (13) reduces to a 2 x 2 determinant. In the canted state, however, the perturbation 
matrix V does not localize in a small size, and therefore we assume that the canted region 
peneeates into interior up to Nth layer from the surface and the layers more than Ntb are 
the bulk. Then the perturbation matrix V becomes N + 2 by N + 2 matrix. In order to find 
the surface modes lying above or below the bulk continuum using a common procedure 
for both the in-plane ordering and the canted states, we search numerically the solutions of 
equation (13) by choosing x-  as an independent variable. The domain of x- is 

1 2 x -  > $(ab - J4 - 4, o > x- 2 -1 (20) 

respectively for below and above the bulk continuum. From equation (16) x+ is dependent 
on x- such that x+ = ;[e - (ez - 4)1/2] with e = 2 a b  - (x- + l/x-). 
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Figure 3. Surhce spin-wave frequency v m s  U = I - yxl in (a) in-plane ordering sate and 
(b) canted state: qs = 1.0 (A), 1.1 (B), 1.145 (C), 1.2 @), 1.3 (E), 1.4 0, 1.95 (G). 2.0 (H), 
2.1 (1). Hatched area represents the bulk continuum. 

In figure 3 the qs dependence of the surface spin-wave dispersion in the case <b = 1.2 
is. illustrated for (a) in-plane ordering state and (b) canted state as a function of U = 1 - ykl. 
We have chosen N = 8 which is sufficient to reach the bulk magnetization as follows 
from figure 2. Since the ordinate measures w - 4u, the bulk continuum a u k  = ab - 2cos 
kz represented by batched area lies between the horizontal l ies  w - 414 = 4(<b - 1) and 
4<b. In the in-plane ordering state a single surface spin-wave branch exists below the bulk 
continuum. As qs increases, the gap of the surface mode with kll = 0 (U = 0) decreases, 
and at qs = qS = 1.145 the surface mode becomes soft, where a surface phase transition 
occurs. For qs beyond qt, the spins at and near the surface cant in the xz plane. The 
surface spin-wave branch shifts upward with increasing qs and then merges into the bulk 
continuum. For qs larger than about 1.93 a surface spin-wave branch appears above the 
bulk continuum. 

It is of interest to examine the nature of the precession of spins at and near the surface. 
For this purpose we have to find the eigenvector corresponding to each surface spin-wave 
branch. Since the surface perturbation does not localize in a small size and in addition spin 
precessions may not be circular but elliptic, it would be difficult to find a simple expression. 
Instead of treating the full matrix, we coniine our attention to the spins in the surface layer 
and fix the spins in the inner layers in the in-plane direction. Then we need only consider 
the terms with layer index I in equation (5). and the canting angle 81, spin-wave frequency 
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Figure 4. Ellipticity Ellip/S(solid line) and the meanquared amplitude Ampls - I(dotted 
line) of the spin precession in the surface layer as a function of the surface aoisohopy vs at 
b T I S J = O . l .  

01 and eigenvector bk,1 can easily be obtained as 

(21) 

with tanhZq5k0 = -ci/al .  With the aid of these expressions we can calculate the ellipticity 
Ellip and mean squared amplitude Amp of the spin precession [U] 

el m-1 - E I  0 1  =e bk,l =COSh$k,,ak,l - Sinh$kIx,,a-kol t 
Ki 

where Nll is the number of atoms in the surface layer and p = s J / k B T .  The spin deviation 
AS = S - (S$) is related to Amp via AS = f(Amp/S - 1). The canting angle 8, and the 
frequency a11 show respectively similar tendencies to the curves shown in figures 2 and 3 
except that q: = 1.25. In figure 4 Ellip/S and Amp/S - 1 are. plotted at kBT/sJ  = 0.1. It 
follows that as qs approaches the critical anisotropy qS from either above or below, EllipIS, 
Amp/S- 1, and hence AS grow large, and right at qs = qS they diverge. Erickson and Mills 
[E] have shown in their study of reorientation of spins in thin films induced by an external 
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field that only ultrathin films exhibit a divergence in the spin deviation at the transition point 
and it is less pronounced as the film thickness increases. Similarly, if we could include the 
inner layers in our calculation in this paragraph, the divergence of Ellip and Amp at the 
transition point would be depressed. 

In this paper we have used a simple exchange-coupled model to take into account an 
interplay of the perpendicular anisotropy at the surface and the in-plane bulk one near 
the surface. We believe that our model describes the characteristic features of the surface 
spin-wave excitations in systems with non-collinear anisotropy. 
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